Top 130 Pipe and cistern questions for Competitive Exams [ 100% FREE ]

Introducing an important aspect of the quantitative aptitude section: the Pipe and cistern questions. A common challenge candidates face in various competitive exams, be it banks, SSC, RRB, Insurance and more, is problems related to pipes and cisterns. In this comprehensive article, we delve deep into “Pipe and cistern questions“, ensuring you get the most effective preparation material.

For many, the term “Pipe and cistern questions” can seem daunting, but with the right approach and understanding of the “pipes and cisterns formula“, it becomes manageable. This is why we’re emphasizing on the crucial examples like “two pipes p and q together can fill a cistern” and “two pipes a and b can fill a cistern“. Both these examples will give you a clear perspective on how to approach these problems.

We also recognize the importance of language adaptability in preparation. Therefore, we have also incorporated “pipe and cistern questions in Hindi” and insights on “pipe and cistern in Hindi“. This ensures that you not only understand the crux of the “pipes and cisterns problems” but also can relate to them in a language you’re comfortable with.

Word problems, especially around the “pipes and cisterns formula“, have been a mainstay in competitive exams. While “two pipes p and q together can fill a cistern” or “two pipes a and b can fill a cistern” might seem similar, they can carry nuances that are essential for aspirants to grasp.

Pipes and Cisterns Formula :

Given below are aimportant formulas which shall help you solve the pipes and cistern based questions quicker and more efficiently:

  • If x hours are required to fill up a tank, then part filled in 1 hr =1/x
  • If y hours are required to empty the tank, then part emptied in 1 hour = 1/y
  • If a pipe can fill a tank in x hours and can empty the same tank in y hours. When both the pipes are opened at the same time, then the net part of the tank filled in 1 hr = {(xy) / (y-x)}, provided y>x
  • If a pipe can fill a tank in x hours and can empty the same tank in y hours. When both the pipes are opened at the same time, then the net part of the tank filled in 1 hr = {(xy) / (x-y)}, provided x>y
  • Net work done = (Sum of work done by Inlets) – (Sum of work done by Outlets)
  • One inlet can fill the tank in x hr and the other inlet can fill the same tank in y hrs, if both the inlets are opened at the same time, the time taken to fill the whole tank = {(xy) / (y+x)}
  • If two pipes take x and y hours respectively to fill a tank of water and a third pipe is opened which takes z hours to empty the tank, then the time taken to fill the tank = {1 / (1/x)+(1/y)+(1/z)} and the net part of the tank filled in 1 hr = (1/x)+(1/y)-(1/z)

The syllabus for competitive exams is vast, as we all know. But every topic, including “Pipe and cistern questions“, holds its weight. Therefore, giving due time to understand and practice these “pipes and cisterns problems” is paramount. Especially when considering the intense competition and the challenge to crack these exams.

In conclusion, this article offers an in-depth understanding of “Pipe and cistern questions“, covering essential examples like “two pipes p and q together can fill a cistern” and “two pipes a and b can fill a cistern“, not forgetting the importance of language with “pipe and cistern questions in Hindi” and “pipe and cistern in Hindi“.

Whether you’re just starting out or brushing up your skills, this article is your guide to excel. So, gear up and dive into the world of “Pipe and cistern questions” and ace your upcoming Government sector exams!

Top 130 Pipe and cistern questions for Competitive Exams :

101. 3 pipes A,B, C are connected to a tank of capacity 39 ltrs. Pipe A can fill the tank in 6 mins, pipe B can fill the tank in 3 mins and Pipe C can empty the tank in 13 mins. In how many secs do all the 3 pipes can fill the tank (approx)? (Consider all pipes are opened at same time).

3 पाइप A, B, C एक 39 लीटर क्षमता के टैंक से जुड़े हुए हैं। पाइप A टैंक को 6 मिनट में भर सकता है, पाइप B टैंक को 3 मिनट में भर सकता है और पाइप C टैंक को 13 मिनट में खाली कर सकता है। सभी 3 पाइप टैंक को कितने सेकंड में (लगभग) भर सकते हैं? (विचार कीजिये कि सभी पाइप एक ही समय में खोले गए हैं)।

A. 146 secs
B. 150 secs
C. 142 secs
D. 133 secs
E. 158 secs

Option “C” is correct.

Time = 39/(6.5+13-3) = 39*2*60/33 = 141.8~ 142 secs

102. A tank is 3/5 full. If 28 litres of water is added to the tank, it becomes 5/6 full. The capacity of the tank is:

एक टैंक का 3/5 भाग भरा हुआ है। यदि टैंक में 28 लीटर पानी डाला जाता है, तो यह 5/6 भाग पूर्ण हो जाता है। टैंक की क्षमता है?

A. 280 litres
B. 320 litres
C. 350 litres
D. 420 litres
E. 120 litres

Option “E” is correct.

Let the capacity of the tank be x litres.

Then, (5x/6 – 3x/5) = 28

=> (25x – 18x) / 30 = 28

= > 7x / 30 = 28

=> 7x = 840

=> x = 120

103. A water tank has three pipes P, Q and R. Pipe P fills 5 cans in 36 minutes, pipe Q fills 7 cans in half an hour and pipe R fills 6 cans in 2/5th of an hour. If all the pipes are opened together, a full tank is emptied in 3 hours. If a can could hold 5.5 liters of water, then find the capacity of the tank.

एक पानी की टंकी में तीन पाइप P, Q और R हैं। पाइप P 36 मिनट में 5 डिब्बे भरता है, पाइप Q आधे घंटे में 7 डिब्बे भरता है और पाइप R 6 डिब्बे को 2/5 वें घंटे में भरता है। यदि सभी पाइपों को एक साथ खोला जाता है, तो एक पूर्ण टैंक 3 घंटे में खाली कर दिया जाता है। यदि एक डिब्बा में 5.5 लीटर पानी भरा जा सकता है, तो टैंक की क्षमता ज्ञात कीजिये।

A. 616 liters
B. 475 liters
C. 298 liters
D. 705 liters
E. None of these

Option “A” is correct.

Can is to be emptied in 3 hours or 180 minutes.

In 36 minutes, pipe P can fill 5 cans.

So, in 180 minutes, it can fill = 180/36 × 5

= 5 × 5 => 25 cans

Similarly,

In 30 minutes, pipe Q can fill 7 cans.

So, in 180 minutes, pipe Q can fill = 180/30 × 7

= 6 × 7 => 42 cans

And,

In (2/5 × 60) = 24 minutes, pipe R can fill 6 cans.

So, in 180 minutes, pipe R can fill = 180/24 × 6

= 7.5 × 6 =>45 cans

So, the total number of cans filled = 25 + 42 + 45 => 112 cans

Now, 1 can = 5.5 litres

So, in 112 cans = 112 × 5.5 = 616 litres

Thus, the total capacity of the tank = 616liters

Hence, the required answer is = 616liters.

104. In a cistern, there is a pipe which can be used for filling the cistern as well as for emptying it. The capacity of the cistern is 800 m3. The emptying of the tank is 10 m3 per minute higher than its filling capacity and the pipe needs 4 minutes lesser to empty the tank than it needs to fill it. What is the filling capacity of the pipe?

एक गढ्ढे में एक पाइप होता है जिसका उपयोग गढ्ढे को भरने के साथ-साथ उसे खाली करने के लिए भी किया जा सकता है। गढ्ढे की क्षमता 800 घन मीटर है। टैंक की खाली करने की क्षमता इसकी भरने की क्षमता से 10 घन मीटर प्रति मिनट अधिक है और टैंक को खाली करने के लिए पाइप को लगा समय टैंक भरने से 4 मिनट कम है। पाइप की भरने की क्षमता क्या है?

A. 40 m3 per minute
B. 20 m3 per minute
C. 10 m3 per minute
D. 15 m3 per minute
E. None of these

Option “A” is correct.

Let x be the filling capacity of the pipe.

800/x – 800/(x + 10) = 4

=> 200/x – 200/(x + 10) = 1

=>x2 + 10x – 2000 = 0

=> x = 40 m3 per minute

105. The tank is 1/3 full. If 14 liters of water is added to the tank, it becomes 4/5 full, then find the capacity of the tank?

टैंक 1/3 भरा हुआ है। यदि टैंक में 14 लीटर पानी डाला जाता है, तो यह 4/5 पूरा हो जाता है, तो टैंक की क्षमता ज्ञात कीजिये?

A. 35 liters
B. 40 liters
C. 30 liters
D. 25 liters
E. None of these

Option “C” is correct.

Let the total capacity of the tank be x,

According to the question,

(1/3) * x + 14 = (4/5) * x

(4/5) * x – (1/3) * x = 14

[(12 – 5)/15] * x = 14

7x/15 = 14

x = 14 * (15/7) = 30 liters

106. There is a water tank of capacity 1500 litres. Two pipes P and Q connected with it can fill the tank in 125 hours and 100 hours respectively. The rate at which Q fills the tank is what percentage more/less than that of P?

1500 लीटर क्षमता का पानी का एक टैंक है। इसके साथ जुड़े दो पाइप P और Q क्रमशः 125 घंटे और 100 घंटे में टैंक को भर सकते हैं। जिस दर पर Q टैंक भरता है वह P से कितने प्रतिशत अधिक / कम है?

A. 30 % less
B. 25 % more
C. 35 % less
D. 40 % more
E. None of these

Option “B” is correct.

Total capacity of the tank = 1500 litres

P = 1500/125 = 12 litres per hour

Q = 1500/100 = 15 litres per hour

Required % = [(15 – 12)/12] * 100 = 25 %

107. A can is full of paint out of which 5 L is removed and it is substituted by a thinning liquid. The process is repeated once more. Now the ratio of volume of paint to the volume of thinner is 49: 15. What is the capacity of the can?

एक कैन पेंट से भरा होता है जिसमें से 5 L को हटा दिया जाता है और इसे थिनिंग लिक्विड द्वारा प्रतिस्थापित किया जाता है। प्रक्रिया को एक बार फिर दोहराया जाता है। अब पेंट और थिनर के आयतन का अनुपात 49: 15 है। कैन की क्षमता क्या है?

A. 50 L
B. 20L
C. 60 L
D. 40L
E. None of these

Option “D” is correct.

Let volume of can be = V litres.

So, according to the question,

Amount of Paint left/Amount of Paint originally = (Volume of can –Volume of replaced/Volume of can)2

= [(49/64) × V]/V = [(V – 5)/V]2

= 49/64 = [(V – 5)/V]2

= 7/8 = (V – 5)/V

Solving we get, V = 40 litres.

Hence, the required answer is = 40 litres.

108. Pipe A alone fill a black color tank in 4 hours, pipe C alone fill a black tanks in 5 hours and pipe B alone fill 3 black tanks in 20 hours. The total capacity of a black tank is 200 liters. If pipe A, B and C are opened in a white tank alternatively, one hour each starting from A, then B and then C, white tank is filled after 120 hours, then find the capacity of white tank?

पाइप A अकेले एक काले रंग के टैंक को 4 घंटों में भरता है, पाइप C अकेले एक काले टैंक को 5 घंटों में भरता है और पाइप B अकेले 3 काले टैंकों को 20 घंटे में भरता है। एक काले टैंक की कुल क्षमता 200 लीटर है। यदि पाइप A, B और C को एक सफेद टैंक में वैकल्पिक रूप से A से शुरू करके, उसके बाद B और उसके बाद C, प्रत्येक को एक घंटे के लिए खोला गया है, सफेद टैंक 120 घंटों के बाद भर गया है, तो सफेद टैंक की क्षमता को ज्ञात कीजिए?

A. 3600 liters
B. 4200 liters
C. 4500 liters
D. 4800 liters
E. 3000 liters

Option “D” is correct.

The three pipes are opened 120 hours, each pipe open for 40 hours.

Pipe A can fill a black tank in 4 hours

Pipe A can fill 10 black tanks in 40 hours.

Pipe B can fill 3 black tanks in 20 hours

Pipe B can fill 6 black tanks in 40 hours

Pipe C can fill a black tank in 5 hours

Pipe C can fill 8 black tanks in 40 hours

Total capacity of white tank = 10 black tanks + 6 black tanks + 8 black tanks

= 24 black tanks

Required answer = 24 * 200 = 4800 liters

109. Pipe A alone fill the tank in x hours and Pipe B alone fill the tank in (x – 8) hours. If the efficiency of pipe B is double of pipe A and pipe A fill the tank is 50 liters per hour, then what is the capacity of the tank?

पाइप A अकेले टैंक को x घंटे में भरता है और पाइप B अकेले टैंक को (x – 8) घंटों में भरता है। यदि पाइप B की दक्षता, पाइप A से दोगुनी है और पाइप A टैंक को 50 लीटर प्रति घंटा भरता है, तो टैंक की क्षमता क्या है?

A. 400 liters
B. 600 liters
C. 780 liters
D. 640 liters
E. 800 liters

Option “E” is correct.

Pipe A alone fill 50 liters per hour, so Pipe B alone fill 100 liters per hour.

Capacity of the tank = T

T/50 – T/100 = x – (x – 8)

T = 800 liters

110. Pipe A and Pipe B can fill a cistern together in 8 hours. Pipe B is 25% more efficient than pipe A. Find the capacity of the cistern, if it is given that pipe A fills the cistern at a speed of 5 litre per minute.

एकसाथ पाइप A और पाइप B एक टंकी को 8 घंटे में भर सकते हैं। पाइप B, पाइप A से 25% अधिक कुशल है। टंकी की क्षमता ज्ञात कीजिए, यदि यह दिया जाता है कि पाइप A टंकी को 5 लीटर प्रति मिनट की गति से भरता है।

A. 90 litres
B. 80 litres
C. 40 litres
D. 30 litres
E. None of these

Option “A” is correct.

Let pipe A fill the tank in x minutes

Pipe B can fill the tank in x*100/125 = 4x/5 minutes

1/x + 5/4x = 1/8

x=18 minutes

Capacity of cistern = 18*5 = 90 lit