Top 130 Pipe and cistern questions for Competitive Exams [ 100% FREE ]

Introducing an important aspect of the quantitative aptitude section: the Pipe and cistern questions. A common challenge candidates face in various competitive exams, be it banks, SSC, RRB, Insurance and more, is problems related to pipes and cisterns. In this comprehensive article, we delve deep into “Pipe and cistern questions“, ensuring you get the most effective preparation material.

For many, the term “Pipe and cistern questions” can seem daunting, but with the right approach and understanding of the “pipes and cisterns formula“, it becomes manageable. This is why we’re emphasizing on the crucial examples like “two pipes p and q together can fill a cistern” and “two pipes a and b can fill a cistern“. Both these examples will give you a clear perspective on how to approach these problems.

We also recognize the importance of language adaptability in preparation. Therefore, we have also incorporated “pipe and cistern questions in Hindi” and insights on “pipe and cistern in Hindi“. This ensures that you not only understand the crux of the “pipes and cisterns problems” but also can relate to them in a language you’re comfortable with.

Word problems, especially around the “pipes and cisterns formula“, have been a mainstay in competitive exams. While “two pipes p and q together can fill a cistern” or “two pipes a and b can fill a cistern” might seem similar, they can carry nuances that are essential for aspirants to grasp.

Pipes and Cisterns Formula :

Given below are aimportant formulas which shall help you solve the pipes and cistern based questions quicker and more efficiently:

  • If x hours are required to fill up a tank, then part filled in 1 hr =1/x
  • If y hours are required to empty the tank, then part emptied in 1 hour = 1/y
  • If a pipe can fill a tank in x hours and can empty the same tank in y hours. When both the pipes are opened at the same time, then the net part of the tank filled in 1 hr = {(xy) / (y-x)}, provided y>x
  • If a pipe can fill a tank in x hours and can empty the same tank in y hours. When both the pipes are opened at the same time, then the net part of the tank filled in 1 hr = {(xy) / (x-y)}, provided x>y
  • Net work done = (Sum of work done by Inlets) – (Sum of work done by Outlets)
  • One inlet can fill the tank in x hr and the other inlet can fill the same tank in y hrs, if both the inlets are opened at the same time, the time taken to fill the whole tank = {(xy) / (y+x)}
  • If two pipes take x and y hours respectively to fill a tank of water and a third pipe is opened which takes z hours to empty the tank, then the time taken to fill the tank = {1 / (1/x)+(1/y)+(1/z)} and the net part of the tank filled in 1 hr = (1/x)+(1/y)-(1/z)

The syllabus for competitive exams is vast, as we all know. But every topic, including “Pipe and cistern questions“, holds its weight. Therefore, giving due time to understand and practice these “pipes and cisterns problems” is paramount. Especially when considering the intense competition and the challenge to crack these exams.

In conclusion, this article offers an in-depth understanding of “Pipe and cistern questions“, covering essential examples like “two pipes p and q together can fill a cistern” and “two pipes a and b can fill a cistern“, not forgetting the importance of language with “pipe and cistern questions in Hindi” and “pipe and cistern in Hindi“.

Whether you’re just starting out or brushing up your skills, this article is your guide to excel. So, gear up and dive into the world of “Pipe and cistern questions” and ace your upcoming Government sector exams!

Top 130 Pipe and cistern questions for Competitive Exams :

81. Pipe P can fill 3/5th of a tank in x minutes and Pipe Q alone can fill the full tank in 2.5x minutes and both pipes together can fill the tank in 24 minutes. Find the time taken by Pipe P alone to fill a tank?

पाइप P एक टैंक का 3/5 भाग x मिनट में भर सकता है और अकेला पाइप Q पूर्ण टैंक को 2.5x मिनट में भर सकता है और एकसाथ दोनों पाइप टैंक को 24 मिनट में भर सकते हैं। अकेले पाइप P द्वारा एक टैंक को भरने में लिया गया समय ज्ञात कीजिये?

A. 40 minutes
B. 60 minutes
C. 50 minutes
D. 48 minutes
E. None of these

Option “A” is correct.

Time taken Pipe P alone to fill the full tank = x * 5/3 = 5x/3 minutes

3/5x + 1/2.5x = 1/24

3/5x + 2/5x = 1/24

5/5x = 1/24

x = 24 minutes

Time taken Pipe P alone to fill the full tank = 5 * 24/3 = 40 minutes

82. Two inlet pipes J and K fill a tank in 32 minutes and 56 minutes respectively and an outlet pipe L can empty the fully filled tank in 28 minutes. Find how long the tank will be full, if the first minute J and K openedtogether and second minute all three works togetherand process repeated till 50% of tank gets filled after that only pipe J will work?

दो इनलेट पाइप J और K एक टैंक को क्रमशः 32 मिनट और 56 मिनट में भरते हैं और एक आउटलेट पाइप L पूरी तरह से भरे टैंक को 28 मिनट में खाली कर सकता है। ज्ञात कीजिए कि टैंक कितने समय में पूरा भरेगा, यदि पहला मिनट में J और K एक साथ खुलते हैं और दूसरे मिनट तीनों एक साथ काम करते हैं और 50% टैंक भर जाने तक प्रक्रिया दोहराई जाती है, उसके बाद केवल पाइप J काम करेगा?

A. 32 minutes
B. 24 minutes
C. 45 minutes
D. 56 minutes
E. None of these

Option “A” is correct.

Total capacity of tank= 224 litres (LCM of 32, 56 and 28)

Efficiency of J, K, and L = 7 l/min, 4 l/min and -8 l/min. respectively

Now, for first minute J and K work = 11 litres

For second minute J, K and L work = 3 litres

So, in 2 mins tank filled = 14 litres

Then, 50% of tank filled= 112/14 => 8 *2

= 16 minutes

Now, remaining 50% of tank filled byJ = 112/7 => 16 minutes

Thus, the required time taken = 16 + 16 => 32 minutes

Hence, the required answer = 32 minutes.

83. Two pipes A and B can fill the tank in 10 hours and 15 hours respectively. These pipes are opened alternatively for one hour each, beginning with pipe A. In what time will the tank full?

दो पाइप A और B क्रमशः 10 घंटे और 15 घंटे में टैंक को भर सकते हैं। इन पाइपों को वैकल्पिक रूप से प्रत्येक को एक घंटे के लिए खोला जाता है, पाइप A के साथ शुरू होता है। कितने समय में टैंक भर जाएगा?

A. 10 hours
B. 12 hours
C. 15 hours
D. 16 hours
E. None of these

Option “B” is correct.

A=1/10

B=1/15

A + B=1/10 + 1/15= (3 + 2)/30 =1/6

1/6 part of the tank in 2 hours and the full tank filled in 6 * 2=12 hours

84. Two Pipes A and B fill the tank in 30 hours. Pipe A alone fill one-fourth of the tank in 20 hours. In how many hours pipe B alone will be completely fill the tank?

दो पाइप A और B 30 घंटे में टैंक भरते हैं। पाइप A अकेले एक-चौथाई टैंक को 20 घंटे में भर देता है। पाइप B अकेले कितने घंटे में पूरी तरह से टैंक को भर देगा?

A. 40 hours
B. 20 hours
C. 38 hours
D. 36 hours
E. None of these

Option “E” is correct.

Pipe A alone completely fill the tank in = 20 * 4/1 = 80 hours

A + B = 1/30

B = 1/30 – 1/80

B = (8 – 3)/240

= 5/240

B = 1/48

In 48 hours the tank will be completely filled by B.

85. Two Pipes A and B can fill the half of a tank in 15 hours and 10 hours respectively. In how many hours both pipes together can fill 75% of the tank?

दो पाइप A और B एक टैंक का आधा भाग क्रमशः 15 घंटे और 10 घंटे में भर सकते हैं। कितने घंटों में दोनों पाइप एक साथ टैंक का 75% भर सकते हैं?

A. 7 hours
B. 8 hours
C. 9 hours
D. 6 hours
E. None of these

Option “C” is correct.

A = 1/30

B = 1/20

A + B = 1/30 + 1/20

= (2 + 3)/60 = 1/12

75% of the tank filled in = 12 * 3/4 = 9 hours

86. There is a water tank of capacity 2400 liters. Two pipes P and Q connected with it, they can fill the tank in 120 hours and 100 hours respectively. The rate at which Q fills the tank is what percentage more/less than that of P?

2400 लीटर क्षमता का पानी का टैंक है। दो पाइप P और Q इसके साथ जुड़े हुए हैं, वे क्रमशः 120 घंटे और 100 घंटे में टैंक को भर सकते हैं। जिस दर पर Q टैंक भरता है वह P से कितने प्रतिशत अधिक / कम है?

A. 20 %
B. 25 %
C. 15 %
D. 30 %
E. None of these

Option “A” is correct.

Total capacity of the tank = 2400 litres

P = 2400/120 = 20 litres per hour

Q = 2400/100 = 24 litres per hour

Required % = [(24 – 20) / 20] * 100 = 20 %

87. Two pipes A and B can fill 40% of a tank in 4 hrs and 10 hrs respectively. If both the pipes are opened simultaneously, how much time will be taken to fill 75% of the tank?

दो पाइप A और B क्रमशः 4 घंटे और 10 घंटे में एक टैंक का 40% भाग भर सकते हैं। यदि दोनों पाइप एक साथ खोले गए हैं, तो टैंक का 75% भाग भरने में लिया गया समय क्या होगा ?

A. 5 (5/14) hours
B. 4 (5/14) hours
C. 4 (11/14) hours
D. 6 (5/14) hours
E. 5 (9/14) hours

Option “A” is correct.

Pipe A can fill 40% of the tank in 4hrs

Pipe A can fill 100% of the tank in 4 * (100/40) = 10 hours

Pipe B can fill 40% of the tank in 10 hrs

Pipe B can fill 100% of the tank in 10*(100/40) = 25 hrs

Tank filled by pipe A and pipe B together in one hour = 1/10 + 1/25 = 5/50 + 2/50 = 7/50

Let the time taken to fill 75% (means 3/4th) of the tank is x

x*(7/50) = 3/4

x = 75/14 hours = 5 (5/14) hours

88. Two pipes P and Q can fill a tank in 5 minutes and 7 minutes respectively. Both the pipes are opened together, but after 2 minutes pipe P is turned off. What is the total time required to fill the tank?

दो पाइप P और Q क्रमशः 5 मिनट और 7 मिनट में एक टैंक को भर सकते हैं। दोनों पाइपों को एक साथ खोला गया है, लेकिन 2 मिनट के बाद पाइप P को बंद कर दिया जाता है। टैंक को भरने के लिए आवश्यक कुल समय क्या है?

A. 4 1/5 minutes
B. 2 minutes
C. 3 ½ minutes
D. 6 minutes
E. None of these

Option “A” is correct.

Part filled in 2 minutes = 2 * (1/5 + 1/7) = 24/35

Remaining part = 1 – 24/35 = 11/35

Part filled by pipe Q in 1 minutes = 1/7

Hence, 1/7 :: 11/35 = 1 :: x

=> x = 11/35 * 7 = 11/5 minutes

The tank will be filled in 2 minutes + 11/5 minutes = 21/5 minutes =4 1/5 minutes

89. Pipe A alone fill the tank in 15 hours and pipe B alone empty the tank in (x + 15) hours. If pipes A and B opened simultaneously, then the tank filled completely in 18 hours. Find the value of x?

अकेला पाइप A टैंक को 15 घंटे में भरता है और अकेला पाइप B टैंक को (x + 15) घंटे में खाली करता है। यदि पाइप A और B एक साथ खोले जाते हैं, तो टैंक 18 घंटे में पूरी तरह से भर जाती है। x का मान ज्ञात करें?

A. 120
B. 90
C. 60
D. 80
E. 75

Option “E” is correct.

1/15 – 1/(x + 15) = 1/18

1/(x + 15) = 1/15 – 1/18

1/x + 15 = 1/90

x = 75

90. Pipe A and C alone fill the tank in 20 hours and 60 hours respectively and pipe B alone empty the tank in (x + 16) hours. If pipes A, B and C opened simultaneously, then the tank filled completely in x hours. Find the value of x? (x-positive integer)

पाइप A और C अकेले टैंक को क्रमशः 20 घंटे और 60 घंटे में भरते हैं और पाइप B अकेले टैंक को (x + 16) घंटे में खाली कर देता है। यदि पाइप A, B और C एक साथ खोले जाते हैं, तो टैंक x घंटे में पूरी तरह से भर जाता है। x का मान ज्ञात करें? (x सकारात्मक पूर्णांक)

A. 12
B. 15
C. 18
D. 24
E. 30

Option “D” is correct.

1/20 + 1/60 – 1/(x + 16) = 1/x

1/15 = 1/x + 1/(x + 16)

1/15 = ((x + 16) + x)/(x * (x + 16)

(2x + 16) * 15 = x2 + 16x

30x + 240 = x2 + 16x

X2 – 14x – 240 = 0

x2 – 24x + 10x – 240 = 0

x(x – 24) + 10(x – 24) = 0

x = 24, -10