260+ Most Asked Ratio And Proportion Questions [100% Free ]

Navigating the landscape of mathematics, one often comes across the fundamental concepts of “ratio and proportion questions“. Grasping the understanding of these is crucial, as ratio and proportion are woven deeply into the fabric of our daily activities, from intricate business dealings to the simplicity of preparing a home-cooked meal. When you see fractions presented in the form ‘a:b’, you’re observing a ratio. Conversely, when two such ratios equate, they form a proportion. And these concepts aren’t just restricted to math; they find resonance in science too.

Now, we know that students sometimes find themselves tangled in the web of ratio and proportion questions. That’s where we come in. If you’ve been on the hunt for “ratio and proportion questions with solutions pdf“, or perhaps “ratio and proportion questions in Hindi“, you’re in the right place. Moreover, for those aiming to ace competitive exams, we’re catering specifically to your needs. Be it “ratio and proportion SSC questions” or “ratio and proportion questions for bank exams“, we’ve got you covered. Perhaps you’re targeting aptitude tests? Our “ratio and proportion aptitude questions” section will be your guiding star.

But that’s not all. We’ve also assembled “ratio and proportion questions pdf” to facilitate easy downloading and offline studying. To ensure that aspirants of various competitive platforms are well-prepared, our database boasts a comprehensive collection of “ratio and proportion questions for competitive exams“. The importance of these questions can’t be overstated, especially when one realizes that they form a vital chunk of the Quantitative Aptitude section in several tests.

Our goal? To dispel any confusion and arm our readers with the clarity and knowledge needed to tackle ratio and proportion questions head-on. As we delve deeper into this article, you’ll discover an array of solved examples, and a revisit of previous year ratio and proportion questions, to fortify your understanding.

Remember, mastering ratio and proportion questions not only equips you for specific topics but also lays a strong foundation for all Arithmetic chapters. So, whether you’re preparing for SSC, SBI, RBI, or any state government exams, this is your one-stop solution hub. Happy learning!

260+ Most Asked Ratio And Proportion Questions

151. Ratio of the sum of two numbers to the difference of these two numbers is 3:1. If three-fifth of nine-twenty fifth of the largest number is 108, then find the average of two numbers.

दो संख्याओं के योग से इन दो संख्याओं के अंतर का अनुपात 3:1 है। यदि सबसे बड़ी संख्या के नौ-पच्चीसवें का तीन-पांचवां भाग 108 है, तो दो संख्याओं का औसत ज्ञात कीजिए।

A. 195
B. 375
C. 215
D. 305
E. None of these

Option “B” is correct.

Let the smallest number = x

The largest number = 108 * 25/9 * 5/3 = 500

(500 + x)/(500 – x) = 3/1

500 + x = 1500 – 3x

4x = 1000

x = 250

Required average = (500 + 250)/2 = 375

152. Ratio of two numbers 7:9. If 20 is added to each number, then the ratio becomes 4:5. Find the ratio of the two numbers, if 20 is subtracted from each number?

दो संख्याओं का अनुपात 7:9 है। यदि प्रत्येक संख्या में 20 जोड़ दिया जाए, तो अनुपात 4:5 हो जाता है। उन दो संख्याओं का अनुपात ज्ञात कीजिए, यदि प्रत्येक संख्या में से 20 घटाया जाता है?

A. 2:3
B. 5:2
C. 3:4
D. 1:5
E. None of these

Option “C” is correct.

Let two number are 7x and 9x respectively

(7x+20) /(9x+20) = 4/5

5(7x+20) = 4(9x+20)

35x+100 = 36x+80

20 = x

Required ratio = (7*20)-20 : (9*20)-20 = 120 : 160 = 3:4

153. The ratio between a two digit and the number formed by reversing the digits is 4:7 respectively. If the difference between the digits is 4, find the original number.

दो अंकों और अंकों को उलट कर बनाई गई संख्या के बीच का अनुपात क्रमशः 4: 7 है। यदि अंकों का अंतर 4 है, तो मूल संख्या ज्ञात कीजिए।

A. 84
B. 48
C. 24
D. 36
E. Can’t be determined

Option “B” is correct.

Let the two digit number be 10x + y

Number obtained by reversing the digit = 10y + x

According to question

7 x (10x + y) = 4 x (10y + x)

70x + 7y = 40y + 4x

66x = 33y

So, x/y = 1/2

Value of x = 4

And value of y = 8

Number = 10 x 4 + 8 = 48

154. The ratio of numbers A and B is 4:3 and the number B is 50% more than that of C. If the sum of numbers B and C is 5 more than that of A, then find 125% of number A?

संख्या A और B का अनुपात 4:3 है और संख्या B, C से 50% अधिक है। यदि संख्याओं B और C का योग A से 5 अधिक है, तो संख्या A का 125% ज्ञात कीजिए?

A. 45
B. 25
C. 35
D. 55
E. None of these

Option “B” is correct.

The ratio of numbers A, B and C = 4:3:3*100/150

= 4:3:3*2/3

= 4:3:2

(3x+2x) – 4x = 5

5x – 4x = 5

x = 5

The number A = 4 * 5 = 20

125% of number A = 20 * 125/100 = 25

155. Total number of employees in a company is 750 and the ratio of the number of employees in HR and Marketing is 12:7 and the number of employees in Animation department is 275. Find the difference between the number of employees in HR and Animation department, if the company has only these three departments.

एक कंपनी में कर्मचारियों की कुल संख्या 750 है और एचआर और विपणन विभाग में कर्मचारियों की संख्या का अनुपात 12:7 है और एनिमेशन विभाग में कर्मचारियों की संख्या 275 है। एचआर और एनिमेशन विभाग में कर्मचारियों की संख्या के बीच का अंतर ज्ञात कीजिए, यदि कंपनी के पास केवल ये तीन विभाग हैं।

A. 50
B. 35
C. 25
D. 75
E. None of these

Option “C” is correct.

Number of employees in Animation department = 275

Number of employees in HR and Marketing department together = 750 – 275 = 475

Number of employees in HR department = 475 * 12/19 = 300

Required difference = 300 – 275 = 25

156. The ratio of the numerator and denominator of a number is 5:6, if the numerator is increased by 20% and the denominator is increased by 9, then the ratio becomes 10:13. Find the value of numerator.

किसी संख्या के अंश और हर का अनुपात 5:6 है, यदि अंश में 20% की वृद्धि और हर में 9 की वृद्धि की जाए, तो अनुपात 10:13 हो जाता है। अंश का मान ज्ञात कीजिए।

A. 25
B. 45
C. 56
D. 85
E. None of these

Option “A” is correct.

Numerator = 5x

Denominator = 6x

(5x * 120/100)/(6x + 9) = 10/13

78x = 60x + 90

x = 5

Numerator = 5 * 5 = 25

157. Ratio of the two numbers A and B is 7:4 and the product of these two numbers A and B is 700. Find the ratio of the two numbers A and B, if 20 is added to each number?

दो संख्याओं A और B का अनुपात 7:4 है और इन दो संख्याओं A और B का गुणनफल 700 है। दो संख्याओं A और B का अनुपात ज्ञात कीजिए, यदि प्रत्येक संख्या में 20 जोड़ दिया जाए?

A. 8:7
B. 9:5
C. 11:8
D. 5:3
E. None of these

Option “C” is correct.

Let the number A = 7x

And the number B = 4x

7x * 4x = 700

x2 = 25

x = 5

The number A = 7 * 5 = 35

The number B = 4 * 5 = 20

Required ratio = (35 + 20) : (20+20) = 55:40 = 11:8

158. If the ratio of a: b = 2: 3, b: c = 3: 4 , c: d = 2:3 , e: d = 2:1 . Then find the ratio of a: b: c: d: e?

यदि a: b = 2: 3, b: c = 3: 4 , c: d = 2:3 , e: d = 2:1 . तो a: b: c: d: e का अनुपात ज्ञात कीजिए?

A. 2: 3: 4: 6: 3
B. 2: 3: 4: 6: 12
C. 1: 3: 6: 9: 12
D. 2: 3: 6: 8: 12
E. None of these

Option “B” is correct.

a/b = 2/3

b/c = 3/4

c/d = 2/3 * 2/2 = 4/6

e/d = 2/1

d/e = 1/2 * 3/3 * 2/2 = 6/12

a: b: c: d: e = 2: 3: 4: 6: 12

159. Two numbers are in the ratio of 2 (2/3): 3 (1/2). If each of the number is increased by 5, then the ratio becomes 17: 22. Find the smallest number?

दो संख्याएँ (2 (2/3): 3 ½) के अनुपात में हैं। यदि प्रत्येक संख्या में 5 से वृद्धि की गई है, फिर अनुपात 17: 22 हो जाता है। सबसे छोटी संख्या को ज्ञात कीजिये?

A. 100
B. 80
C. 90
D. 120
E. None of these

Option “B” is correct.

Two numbers are in the ratio = (2 (2/3): 3 (1/2))

= > (8/3: 7/2) = 16: 21 (16x, 21x)

Given,

(16x + 5)/(21x + 5) = (17/22)

352x + 110 = 357x + 85

5x = 25

x = 5

The smallest number = 16x = 80

160. Two numbers are in the ratio of 4: 5. If the first number is doubled, while second number is increased by 60, then the new ratio is 2: 5. Find the sum of the two numbers initially.

दो संख्याएँ 4: 5 के अनुपात में हैं। यदि पहली संख्या को दोगुना किया जाता है जबकि दूसरी संख्या को 60 बढ़ा दिया जाता है, तो नया अनुपात 2: 5 है। आरंभिक संख्याओं का योग ज्ञात कीजिए?

A. 42
B. 36
C. 84
D. 58
E. None of these

Option “B” is correct.

Let the number be 4x and 5x.

According to question,

(4x * 2)/(5x + 60) = 2/5

40x = 10x + 120

30x = 120

x = 4

Required sum = 4 * 4 + 5 * 4 = 36.