260+ Most Asked Ratio And Proportion Questions [100% Free ]

Navigating the landscape of mathematics, one often comes across the fundamental concepts of “ratio and proportion questions“. Grasping the understanding of these is crucial, as ratio and proportion are woven deeply into the fabric of our daily activities, from intricate business dealings to the simplicity of preparing a home-cooked meal. When you see fractions presented in the form ‘a:b’, you’re observing a ratio. Conversely, when two such ratios equate, they form a proportion. And these concepts aren’t just restricted to math; they find resonance in science too.

Now, we know that students sometimes find themselves tangled in the web of ratio and proportion questions. That’s where we come in. If you’ve been on the hunt for “ratio and proportion questions with solutions pdf“, or perhaps “ratio and proportion questions in Hindi“, you’re in the right place. Moreover, for those aiming to ace competitive exams, we’re catering specifically to your needs. Be it “ratio and proportion SSC questions” or “ratio and proportion questions for bank exams“, we’ve got you covered. Perhaps you’re targeting aptitude tests? Our “ratio and proportion aptitude questions” section will be your guiding star.

But that’s not all. We’ve also assembled “ratio and proportion questions pdf” to facilitate easy downloading and offline studying. To ensure that aspirants of various competitive platforms are well-prepared, our database boasts a comprehensive collection of “ratio and proportion questions for competitive exams“. The importance of these questions can’t be overstated, especially when one realizes that they form a vital chunk of the Quantitative Aptitude section in several tests.

Our goal? To dispel any confusion and arm our readers with the clarity and knowledge needed to tackle ratio and proportion questions head-on. As we delve deeper into this article, you’ll discover an array of solved examples, and a revisit of previous year ratio and proportion questions, to fortify your understanding.

Remember, mastering ratio and proportion questions not only equips you for specific topics but also lays a strong foundation for all Arithmetic chapters. So, whether you’re preparing for SSC, SBI, RBI, or any state government exams, this is your one-stop solution hub. Happy learning!

260+ Most Asked Ratio And Proportion Questions

11. If x + y + z = 400 and x : y : z = 1 : 1 : 2, then what is the value of z?

यदि x + y + z = 400 और x : y : z = 1 : 1 : 2 है, तो z का मान क्या है?


Option”B” is correct

Let the value of x, y and z be a, a, and 2a

⇒ x + y + z = 400 [Given]

⇒ a + a + 2a = 400

⇒ a = 100

⇒ The value of z = 2a = 200

∴ The value of z is 200.

12.The sum of two numbers x and y is 48 and their difference is 6. Then x : y = ?

दो संख्याओं x और y का योग 48 है और उनका अंतर 6 है, तो x : y = ?


Option”D” is correct

Given, x + y = 48      …1)

⇒ x – y = 6      …2)

From (1) + (2)

⇒ x = 27

⇒ y = 21

⇒ x : y = 27 : 21 = 9 : 7

∴ The ratio of x : y is 9 : 7

13. The monthly incomes of A and B are in the ratio 3 : 4 and the ratio of their monthly expenditures is 2 : 3. If each saves Rs. 4000 per month, then what is the income of B?
 
A और B की मासिक आय का अनुपात 3 : 4 है और उनके मासिक व्यय का अनुपात  2 : 3 है। यदि प्रत्येक प्रति माह 4000 रूपए की बचत करता है, तब B की आय क्या है?


Option”C” is correct

Let the monthly income of A and B be 3x and 4x

And the monthly expenditures be 2y and 3y

Saving = income – expenditure

4000 = 4x – 3y     …1)

Similarly,

4000 = 3x – 2y      …2)

From 2 × (1) – 3 × (2)

8000 – 12000 = 8x – 9x

x = 4000

The income of B = 4x = 16000

∴ The income of B is 16000.

14. If (A + B): (B + C): (C + A) = 6: 7: 5, then find the value of C: (A + B)?

यदि (A + B): (B + C): (C + A) = 6: 7: 5, तो C: (A + B) का मान ज्ञात कीजिए?


Option”A” is correct

Let,

(A + B) = 6x      —- (1)

(B + C) = 7x      —- (2)

(C + A) = 5x      —- (3)

Adding equations (1), (2) and (3),we get

2(A + B + C) = 6x + 7x + 5x

A + B + C = 9x      —- (4)

From equations (1) and (4):

C = 3x

From equations (2) and (4):

A = 2x

From equations (3) and (4):

B = 4x

Now, C: (A + B) = 3x : 6x = 1 : 2

15. The sum of the squares of 3 natural numbers is 1029, and they are in the proportion 1 : 2 : 4, The difference between the greatest number and the smallest number is:

3 प्राकृतिक संख्याओं के वर्गों का योग 1029 है, और वे 1 : 2 : 4 के अनुपात में हैं, सबसे बड़ी संख्या और सबसे छोटी संख्या के बीच का अंतर ज्ञात कीजिये।


Option”D” is correct

The ratio of three natural numbers = x : 2x : 4x

According to the question

x2 + (2x)2 + (4x)2 = 1029

⇒ x2 + 4x2 + 16x2 = 1029

⇒ 21x2 = 1029

⇒ x2 = 1029/21

⇒ x2 = 49

⇒ x = √49 = 7

∴ Difference between greatest number and smallest numbers = 4x – x = 3x = 3 × 7 = 21

16. The ratio of the number of boys and girls in a school is 3 : 2. If 20% of the boys and 25% of the girls are scholarship holders, the percentage of the school students who are not scholarship holders is:

एक स्कूल में लड़कों और लड़कियों की संख्या का अनुपात 3 : 2 है। यदि 20% लड़के और 25% लड़कियां छात्रवृत्ति प्राप्त करती हैं, तो स्कूल में छात्रवृत्ति नहीं प्राप्त करने वाले छात्रों की संख्या का प्रतिशत है:


Option”B” is correct

Ratio of the number of boys and girls in a school is = 3 : 2 or 30 : 20

Let number of boys = 30 and number of girls = 20

Total students = 30 + 20 = 50

Number of boys who did not get scholarship = 30 × (80/100) = 24

Number of girls who did not get scholarship = 20 × (75/100) = 15

Total number of students who did not get scholarship = 24 + 15 = 39

∴ Percentage of students who did not get scholarship = 39/50 × 100 = 78%

17. If three numbers are in the ratio 2 : 3 : 5 and the twice of their sum is 200. The square of the largest of three numbers is:

यदि तीन संख्याएँ 2: 3: 5 के अनुपात में हैं और उनके योग का दोगुना 200 है। तीन संख्याओं में से सबसे बड़ी संख्या का वर्ग क्या है?


Option”D” is correct

Given:

Ratio of three numbers is  2 : 3 : 5

Twice of their sum is 200

Calculation:

⇒ 2 + 3 + 5 = 10 unit

According to the question,

⇒ 10 unit = 200/2

⇒ 1 unit = 10

⇒ 5 unit = 50

The square of the largest of three numbers is 2500.

18. If 25 percent of a number is subtracted from itself then the ratio of the number obtained to the other number is 2 : 1. Find the ratio between the first numbers to the second number.

यदि किसी संख्या के 25 प्रतिशत को स्वयं उस संख्या से घटाया जाता है, तो प्राप्त संख्या और दूसरी संख्या का अनुपात 2 : 1 है। पहली संख्या और दूसरी संख्या के बीच अनुपात ज्ञात कीजिए​।


Option”D” is correct

Let the 1st and 2nd numbers be A and B respectively

According to the question

{A – (25% of A)} : B = 2 : 1

⇒ (A – A/4) : B = 2 : 1

⇒ (3A/4) : B = 2 : 1

⇒ 3A/4B = 2/1

⇒ A/B = 8/3

19. If (4x + 5) : (3x + 11) = 13 : 17, then (5x + 4) : (4x – 1) = ?

यदि (4x + 5) : (3x + 11) = 13 : 17 है, तो (5x + 4) : (4x – 1) ज्ञात कीजिए?


Option”D” is correct

Given:

(4x + 5) ∶ (3x + 11) = 13 ∶ 17

Calculation:

We have (4x + 5) : (3x + 11) = 13 : 17

68x + 85 = 39x + 143

⇒ 29x = 58

⇒ x = 2

Now, we have to find the value of (5x + 4) ∶ (4x – 1)

⇒ (5 × 2 + 4) ∶ (4 × 2 – 1)

⇒ 14 ∶ 7

⇒ 2 ∶ 1

∴ The value of (5x + 4) : (4x – 1) is 2 : 1.

20. Two numbers are such that the ratio between them is 3 ∶ 4 if 3 is added to each of them becomes 10 ∶ 13. The original numbers are:

दो संख्याएँ इस प्रकार हैं कि उनके बीच अनुपात 3 ∶ 4 है। यदि प्रत्येक संख्या में 3 जोड़ा जाता है तो अनुपात 10 ∶ 13 हो जाता है। मूल संख्याएँ क्या हैं?


Option”D” is correct

Given:

Two numbers are in the ratio 3 ∶ 4

After adding 3 to each number the number become 10 ∶ 13

Calculation:

Let the constant be x

Two are 3x and 4x

According to question:

⇒ {(3x + 3) / (4x + 3)} = 10/13

⇒ 39x + 39 = 40x + 30

⇒ x = 9

∴ Original number = 3 × 9 = 27

⇒ 4 × 9 = 36

Click here to Practice Previous year 10000+ Questions of Quantitative Aptitude
Click here to Practice Get Free E-books and notes of All Subjects