Top140 Simple Interest Questions For 100% Free [Effective]

Welcome to this guide on simple interest questions. For many, the topic of interest can be confusing, especially when diving into the world of finance. If you’ve ever wondered about simple interest questions or how to work with simple interest problems, you’re in the right place.

We frequently come across the word “interest” in our daily lives, especially when talking about money. There are different types of interests, with simple interest and compound interest being the most common. Through this article, we’ll be focusing extensively on simple interest questions and simple interest problems.

For those who prefer understanding in their native language, we’ve got simple interest questions in Hindi and the simple interest formula in Hindi. Our goal is to make simple interest in Hindi understandable for everyone.

But, what exactly is the simple interest formula? It’s a method used to figure out how much interest you’ll earn or owe over a period of time. The formula is straightforward: SI = PTR/100, where P is the Principal amount, T is the Time (in years), and R is the Interest rate.

Moreover, it’s essential to know that simple interest questions and simple interest and compound interest questions often appear in competitive exams. Whether it’s SSC, SBI, Railways, or any other state exams, mastering simple interest and compound interest questions can give you an edge. If you have a clear concept of ratio and percentage, you’ll find that tackling simple interest questions becomes much more manageable.

So, let’s dive deeper into simple interest questions and help you master the topic, whether in English or simple interest in Hindi. Happy learning!

Top140 Simple Interest Questions

91. Divide Rs. 1301 between A and B so that the amount of A after 7 years is equal to the amount of B after 9 years, the interest being compound at 4% per annum.

धनराशि 1301 रुपए को A और B में इस प्रकार विभाजित कीजिये कि 7 वर्ष बाद A की धनराशि, 9 वर्ष बाद B की धनराशि के बराबर हो, जिसके चक्रवृद्धि ब्याज की गणना 4% वार्षिक की दर से की जाती है। 


Option”A” is correct

Let, amount of A be Rs x

Amount of B = Rs (1301 – x)

We know, A = P(1 + R/100)T 

⇒ x × (1 + 4/100)7 = (1301 – x) × (1 + 4/100)9

⇒ x/(1301 – x) = (1 + 4/100)2

⇒ x/(1301 – x) = 676/625

⇒ 625x = 676 × 1301 – 676x

⇒ 1301x = 676 × 1301

⇒ x = 676

Amount of B is (1301 – 676) = Rs. 625

∴ Amount of A is Rs. 676, and Amount of B is Rs. 625.

92. he amount at the end of the 4th year when a sum is invested at a rate of 9% per annum compounded annually is Rs. 763. What is the amount at the end of the 3rd year on the same sum at the same rate of interest?

9% वार्षिक ब्याज की दर पर एक राशि का निवेश करने पर चौथे वर्ष के लिए चक्रवृद्धि ब्याज 763 रुपए है। तो समान ब्याज की दर से समान राशि पर तीसरे वर्ष के लिए चक्रवृद्धि ब्याज क्या है?


Option”C” is correct

Applying the formula:

 The amount at the end of the 3 years × (1 + 9/100) = 763

 Amount at the end of the 3 years = 763 × (100/109) = Rs. 700

93. Find the compound interest on Rs. 50,000 in 3 years if the rate of interest is 5% p.a. for the first year, 4% p.a. for the second year, and 2% p.a. for the third year?

50,000 रुपये पर 3 वर्ष में चक्रवृद्धि ब्याज ज्ञात कीजिए, यदि ब्याज 5% प्रति वर्ष की दर से पहले वर्ष के लिए, 4% प्रति वर्ष की दर से दूसरे वर्ष के लिए और 2% प्रति वर्ष की दर से तीसरे वर्ष के लिए है?


Option”C” is correct

A = 50,000 × (105/100) × (104/100) × (102/100)

⇒ A = 50,000 × (21/20) × (26/25) × (51/50)

⇒ A = 55692

Hence, CI = 55692 – 50,000 = Rs. 5692 

94. What would be the compound interest earned on Rs. 20000 in 2 years if the rate of interest for the first year is 5% per annum and that for the second year is 8% per annum?

यदि पहले वर्ष के लिए ब्याज की दर 5% प्रति वर्ष है और दूसरे वर्ष के लिए ब्याज की दर 8% प्रति वर्ष है तो 20000 रु की राशि पर 2 वर्षों में अर्जित किया गया चक्रवृद्धि ब्याज क्या होगा?


Option”A” is correct

Cumulative rate when rate is 5% per annum for the first year and 8% per annum for the second year = 5 + 8 + (40/100) = 13.4%

∴ Interest = 20000 × (13.4/100) = Rs. 2680

Alternate Method

Amount = P(1 + R1/100)(1 + R2/100)

= 20000(1 + 5/100)(1 + 8/100)

= 20000(105/100)(108/100)

= 22680

∴ Compound interest = 22680 – 20000 = Rs. 2680.

95. What is the total compound interest on Rs. 45000 for 3 years when the sum is divided into a ratio of 4 : 5 and rate of interest on a small sum is 10% and 20% on the large sum? (Compounded annually)

45000 रुपये की धनराशि को 4 : 5 के अनुपात में विभाजित करके छोटी व बड़ी धनराशि पर क्रमशः 10% एवं 20% ब्याज प्रभारित करने पर 3 वर्ष का चक्रवृद्धि ब्याज कितना होगा?


Option”B” is correct

Let P = principal, R = rate of interest and N = time period

Compound interest = P(1 + R/100)n – P

Given, sum = 45000

Ratio of two parts = 4 : 5

Two parts of sum = 45000 × 4/9 and 45000 × 5/9

= 20000 and 25000

Given, Compound interest = 20000(1 + 10/100)3 – 20000

= 6620

Given, Compound interest = 25000(1 + 20/100)3 – 25000

= 18200

Total compound interest = 6620 + 18200 = 24820

∴ Total compound interest is Rs. 24820.

96.In a bank, Deepa deposits a sum of Rs. 6250, which amounts to Rs. 7840 in two years, compounded annually. The rate of interest is:In a bank, Deepa deposits a sum of Rs. 6250, which amounts to Rs. 7840 in two years, compounded annually. The rate of interest is:

एक बैंक में दीपा 6250 रुपये का निवेश करती है, जो दो वर्षों में वार्षिक चक्रवृद्धि ब्याज पर 7840 रुपये हो जाती है। ब्याज की दर है:


Option”B” is correct

Let the rate of interest be r%.

⇒ Compounded Amount = Principal{1 + (rate/100)}time

⇒ 7840 = 6250{1 + (r/100)}2

⇒ 784/625 = {1 + (r/100)}2

⇒ (28/25)2 = {1 + (r/100)}2

⇒ 28/25 = 1 + (r/100)

⇒ r = 12%

∴ The rate of interest is 12%.

97.A person borrowed a certain sum at 10% p.a. for three years, interest being compounded annually. At the end of two years, he repaid a sum of Rs. 6,634 and at the end of the third year, he cleared off the debt by paying Rs.13,200. What was the sum borrowed by him?

एक व्यक्ति ने 10% प्रतिवर्ष पर एक निश्चित राशि तीन साल के लिए उधार ली, जिसका ब्याज वार्षिक रूप से संयोजित होता है। दो साल के अंत में, उसने 6,634 रुपये का भुगतान किया और तीसरे वर्ष के अंत में, उसने 13,200 रुपये] का भुगतान किया। उसके द्वारा उधार ली गई राशि क्या थी?


Option”C” is correct

Let the principal be 100x.

Amount will be after 2 years A = 100x × [11/10] × [11/10] = 121x

According to the question

⇒ [121x – 6634] × [11/10] = 13200

⇒ 121x – 6634 = 12000

⇒ 121x = 18634

⇒ 100x = [18634/121] × 100 = Rs. 15,400

98. What will be the amount if a sum of Rs 25,000 is placed at CI for 3 years while rate of interest for the first, second, and third years is 4%, 8%, and 10%, respectively?

यदि ₹ 25,000 की धनराशि को 3 वर्षों के लिए चक्रवृद्धि ब्याज पर रखा जाता है जबकि पहले, दूसरे और तीसरे वर्ष के लिए ब्याज की दर 4%, 8% और 10% है, तब धनराशि क्या होगी?


Option”A” is correct

When rate of interest are different then,

A = P(1 + R1/100) × (1+ R2/100) × (1 + R3/100)

Amount after 3 years = 25000(1 + 4/100) × (1 + 8/100) × (1 + 10/100)

= 25000 (104/100) × (108/100) × (110/100)

= 2.5 × 104 × 108 × 11/10 = Rs. 30888

99. The interest on Rs. 24, 000 in 2 years compounded annually when the rates are 8% p.a. and 10% p.a. for two successive years is∶

जब दो क्रमागत वर्षो के लिए ब्याज की दर 8% वार्षिक और 10% वार्षिक हैं, तो 2 वर्षो में वार्षिक रूप से संयोजित होने पर 24,000 रुपए की राशि पर ब्याज क्या है?


Option”B” is correct

Principle for the first year = Rs. 24000

Interest on Rs. 24000 at 8% p.a. for 1st year = Rs. 1920

Principle for 2nd year = 24000 + 1920 = Rs. 25920

Interest on Rs. 25920 at 10% p.a. for 1st year = Rs. 2592

∴ Total Interest for two successive years = 1920 + 2592 = Rs. 4512 

100.A certain amount invested at a certain rate, compounded annually, grows to an amount in five years, which is a factor of 1.1881 more than to what it would have grown in three years. What is the rate percentage?

एक निश्चित दर पर निवेश की गयी एक विशिष्ट राशि जो वार्षिक रूप से संयोजित होती है, पाँच वर्षों में उस राशि तक बढ़ जाती है, जो तीन वर्षो में बढ़कर 1.1881 के गुणक से अधिक हो जाती है। तो दर प्रतिशत क्या है?


Option”B” is correct

Let the principal and the amount be P and 1.1881P.

From five years to three years,

Difference in the time = 5 – 3 = 2 years

Using formula,

A = P(1 + R/100)n

⇒ 1.1881P = P(1 + R/100)2

⇒ 1.1881 = (1 + R/100)2

⇒ 1.09 = 1 + R/100

⇒ 0.09 = R/100

⇒ R = 9%

∴ Rate of interest in 9%.