Top140 Simple Interest Questions For 100% Free [Effective]

Welcome to this guide on simple interest questions. For many, the topic of interest can be confusing, especially when diving into the world of finance. If you’ve ever wondered about simple interest questions or how to work with simple interest problems, you’re in the right place.

We frequently come across the word “interest” in our daily lives, especially when talking about money. There are different types of interests, with simple interest and compound interest being the most common. Through this article, we’ll be focusing extensively on simple interest questions and simple interest problems.

For those who prefer understanding in their native language, we’ve got simple interest questions in Hindi and the simple interest formula in Hindi. Our goal is to make simple interest in Hindi understandable for everyone.

But, what exactly is the simple interest formula? It’s a method used to figure out how much interest you’ll earn or owe over a period of time. The formula is straightforward: SI = PTR/100, where P is the Principal amount, T is the Time (in years), and R is the Interest rate.

Moreover, it’s essential to know that simple interest questions and simple interest and compound interest questions often appear in competitive exams. Whether it’s SSC, SBI, Railways, or any other state exams, mastering simple interest and compound interest questions can give you an edge. If you have a clear concept of ratio and percentage, you’ll find that tackling simple interest questions becomes much more manageable.

So, let’s dive deeper into simple interest questions and help you master the topic, whether in English or simple interest in Hindi. Happy learning!

Top140 Simple Interest Questions

121. The difference between CI and SI on a sum of Rs.5000 for the period of two years is 72. Find the ratio of CI to SI.

दो वर्ष की अवधि के लिए 5000 रु. की राशि पर CI और SI के बीच का अंतर 72 है। CI से SI का अनुपात ज्ञात कीजिए।


Option”A” is correct

CI – SI = P(r/100)2

⇒ 72 = 5000 × (r/100)2

⇒ 72 = 5000 × r2/10000

⇒ r2 = 72 × 2 = 144

⇒ r = 12 %

CI/SI = (200 + r)/200

⇒ CI/SI = (200 + 12)/200

⇒ 212/200

⇒ 53/50

∴ The ratio of CI to SI is 53 : 50.

122.The amount of Rs. 225 deposited on Compound interest becomes 16 times after 4 years. After 7 years it will become

चक्रवृद्धि ब्याज पर जमा 225 रूपये की राशि 4 वर्षों के बाद 16 गुनी हो जाती है। 7 वर्षों बाद यह हो जाएगी 


Option”D” is correct

Total deposited amount = Rs. 225

Compound amount becomes 16 times of principal amount after 4 years

So, the Compounded amount = 16 × 225 = Rs. 3600

Now by formula

Compounded amount = Principal × [1 + (Rate/100)] Time

⇒ 225 × [1 + (Rate/100)]4 = 3600

⇒ [1 + (Rate/100)]4 = 16

⇒ [1 + (Rate/100)]4 = 24

⇒ [1 + (Rate/100)] = 2

⇒ Rate/100 = 2 – 1

⇒ Rate = 100%

After 7 years the Compounded amount

⇒ 225 × [1 + (100/100)]7

⇒ 225 × 27 = Rs. 28800

∴ After 7 years amount will become Rs. 28800.

Alternate method: (Short trick)

In 4 years amount = 16 times = 24 times

In 7 years amount become = 27 times

After 7 years amount

⇒ 225 × 27 = 225 × 128 = Rs. 28800

∴ After 7 years amount will become Rs. 28800.

123. The compound interest on a certain sum at a certain rate percent per annum for the second year and the third year are ₹ 3300 and ₹ 3630, respectively. The sum is:

एक निश्चित राशि पर दूसरे वर्ष और तीसरे वर्ष के लिए एक निश्चित दर प्रतिशत पर चक्रवृद्धि ब्याज क्रमशः ₹ 3300 और ₹ 3630 है। राशि है:


Option”C” is correct

Interest rate = [(3630 – 3300)/3300] × 100 = 10%

CI for first year = 3300 × 100/110 = 3000

Let Principal be P, then

10 % of P = 3000

P × 1/10 = 3000

P = ₹ 30,000

124. The amount at compound interest on a sum for 5 years is ₹ 7800 and for 6 years is ₹ 9048 (interest is compounded annually). What is the rate of interest?

एक धनराशि पर चक्रवृद्धि ब्याज पर 5 वर्षों में धनराशि ₹ 7800 6 वर्षों में ₹ 9048 (ब्याज वार्षिक चक्रवृद्धि है) है। ब्याज की दर क्या है?


Option”C” is correct

Given,

Amount for 5 years = 7800

Amount for 6 years = 9048

Principal for 6th year = 7800

Now,

9048 = 7800 × {1 + (R/100)}1

⇒ {1 + (R/100)} = 9048/7800

⇒ 100 + R = (9048/7800) × 100

⇒ 100 + R = 116

⇒ R = 116 – 100 = 16

∴ Rate of interest is 16%.

125. At what rate of interest per annum will Rs. 2560 amounts to Rs. 3645 in one and half years compounded half yearly?

अर्ध वार्षिक रूप से संयोजित होने वाली किस वार्षिक ब्याज की दर पर 2560 रुपए की राशि डेढ़ वर्ष में होकर 3645 रुपए हो जाएगी?


Option”C” is correct

Suppose ‘r’ is the rate of interest per annum;

Since the interest is compounded half yearly;

∴ R = r/2 and t = 3 years

∴ 3645 = 2560 × (1 + r/200)3

⇒ (1 + r/200)3 = 729/512

⇒ 1 + r/200 = 9/8

⇒ r/200 = 1/8

⇒ r = 200/8 = 25%

∴ Rate of interest per annum = 25%

126. A sum of Rs. 18,000 is invested for 16 months at 8% per annum compounded half-yearly. What is the percentage gain at the end of 16 months, to the nearest whole number?

18,000 रुपए की एक राशि अर्ध वार्षिक रूप से संयोजित होने वाली 8% वार्षिक ब्याज की दर पर 16 महीनों के लिए निवेश की जाती है। तो निकटतम पूर्णांक के लिए 16 महीनों के अंत पर लाभ प्रतिशत क्या है?


Option”B” is correct

⇒ Rate = 12%

⇒ Rate for 6 months = (8/2)% = 4%

⇒ Rate for 4 months = (8/3) %

Short Trick∶

Percentage gain at the end of 12 month = 4% + 4% + (4% × 4%)/100 = 8% + 0.16% = 8.16%

Percentage gain at the end of 16 month = 8.16% + (8/3)% + [8.16% × (8/3)%]/100 = 8.16% + 2.66% + 0.2176% = 11.0376% = 11% (approx)

127.A sum amounts to Rs. 13760 after 3 years and Rs. 17200 after 6 years, when interest is compounded annually. How much will it amount to at the same rate of interest after 9 years?

कोई राशि 3 वर्ष बाद 13760 रुपये और 6 वर्ष बाद 17200 रुपये हो जाती है, जब ब्याज वार्षिक रूप से समायोजित होता है। समान ब्याज दर पर 9 वर्ष बाद वह राशि कितनी हो जाएगी?


Option”C” is correct

Suppose P = principal, R = rate of interest and N = Time

Amount = P(1 + R/100)N

Given,

⇒ 13760 = P(1 + R/100)3      —-(1)

⇒ 17200 = P(1 + R/100)6      —-(2)

Dividing and solving the above equations,

⇒ (1 + R/100)3 = 5/4

Then,

⇒ 13760 = P × 5/4

⇒ P = 11008

Required amount after 9 years = 11008 × (1 + R/100)9

= 11008 × (5/4)3 = Rs. 21500

128. A sum of Rs. 5,000 amounts to Rs. 7,200 in 8 years at a certain rate per cent p.a interest compounded yearly. What will be the compound interest on a sum of Rs. 6,550 in 4 years at the same rate of interest?

चक्रवृद्धि दर पर वार्षिक रूप से 5,000 रुपये की राशि 8 वर्षों में एक निश्चित दर पर 7,200 रुपये हो गई। 6,550 रुपये की राशि पर 4 वर्षों के लिए उसी दर पर चक्रवृद्धि ब्याज क्या होगा?


Option”D” is correct

P = 5000, A = 7200, t = 8 years

As we know,

A = P (1 + r/100)t

7200 = 5000 (1 + r/100)8

7200/5000 = (1 + r/100)8

(1 + r/100)8 = 36/25

(1 + r/100)4 = √36/25 = 6/5

A = P (1 + r/100)t

A = 6550 (1 + r/100)4

A = 6550 × 6/5

A = 7860

CI = 7860 – 6550 = 1310 

Shortcut Trick √5000 : √7200

√25 : √36

5 : 6

5 unit = 6550

1 unit = 6550/5 = 1310

129.At what percent per annum will Rs. 6000 amounts to Rs. 7986 in 3 years, if the interest is compounded annually?

6000 रु. की राशि प्रति वर्ष कितने प्रतिशत पर 3 साल में 7986 रु. हो जाएगी, यदि ब्याज चक्रवृद्धि ब्याज के रूप से संयोजित होता है?


Option”D” is correct

Let the rate percentage be R% per annum

According to question,

7986 = 6000 (1 + R/100)3

⇒ (1 + R/100)= 7986/6000

⇒ (1 + R/100)= 1331/1000

⇒ (1 + R/100) = (1331/1000)1/3

⇒ 1 + R/100 = 11/10

⇒ R/100 = 1/10

∴ The rate percent per annum is 10%

130. Varsha has a total of Rs. 20000 and a part of which she invested for Rahul at 20% p.a. at CI for 3 years and remaining for Vansh at 40% p.a. at CI for 3 years. If the interest amount received by Vansh is Rs. 3980 more than that received by Rahul, then what is the ratio of the amount invested for Rahul to that for Vansh?

वर्षा के पास कुल 20000 रुपये हैं और जिसके एक हिस्से को वह राहुल के लिए 3 वर्षों के लिए 20% वार्षिक चक्रवृद्धि ब्याज पर निवेश करती है और शेष वंश के लिए 3 वर्षों के लिए 40% वार्षिक चक्रवृद्धि ब्याज पर निवेश करती है। यदि वंश के द्वारा प्राप्त ब्याज धनराशि राहुल के द्वारा प्राप्त ब्याज धनराशि से 3980 रुपये अधिक है, तो राहुल के लिए निवेशित धनराशि का वंश से अनुपात क्या है?


Option”C” is correct

Let the amount invested for Rahul and Vansh be ‘x’ and ‘20000 – x’ respectively.

According to the question,

x × (1.23 – 1) + 3980 = (20000 – x) × (1.43 – 1)

⇒ 0.728x + 3980 = 34880 – 1.744x

⇒ 2.472x = 30900

⇒ x = 12500

∴ Required ratio = x : (20000 – x) = 12500 : 7500 = 5 : 3

simple interest questionssimple interest questions in hindisimple interest problems
simple interest formula in hindisimple interest questions in Englishsimple interest in hindi PDF